WWW. advantagesideout.com (858) 635-8904

Algebra-I

WWW. buenomath.com

FREE step-by-step solutions Free additional copies & subjects

Properties of Operations			
	addition	Multiplication	
Commutative	a + b = b + a	axb=bxa	
Associative (a+b)+c = a+(b+c) (ab)c =		(ab)c = a(bc)	
Identity	a+0 = a	a x 1 = a	
Inverse inv	verse of 5 is -5 inverse of 5 is 1/5		
Distributive	a∙(b+c)=(a·b)+(a·c)	

Properties of Equality & mequality			
	equality	inequality	
Reflexive	a = a		
Symmetric	If a = b, then b =a		
Transitive	If a=b & b=c, then a = c	If a <b &="" b<c,<br="">then a<c< th=""></c<>	
Addition	lf a=b, then a+c = b+c	lf a <b, then<br="">a+c < b + c</b,>	
Subtraction	If a=b, then a − c = b − c	If a <b, then<br="">a – c < b – c</b,>	
Multiplication	lf a=b, then a x c = b x c	If a <b, then<br="">a x c < b x c</b,>	
Division	If a=b, then a/c = b/c	lf a <b, then<br="">a/c < b/c</b,>	

Properties of Equality & Inequality

WWW. advantagesideout.com (858) 635-8904

Algebra-I

A math & science tutorial center

To find equation of line

through A (3, 7) & B (–3,2) Note: basic equation is y = mx + b

1) Find slope using A and B $m = \frac{y_2 - y_1}{y_1} = \frac{7 - 2}{3 - (-3)} = \frac{5}{6}$

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 2}{3 - (-3)} =$$

- 2) Re-write basic equation with actual m $y=\frac{5}{6}x+b$
- 3) Pick A or B to substitute in for x & y In this example we will use B (-3,2)

$$2 = \frac{5}{6}(-3) + b$$

4) Solve for b
$$b = \frac{9}{2}$$

5) Rewrite basic equation with numbers

 $y = \frac{5}{6}x + \frac{9}{2}$ DONE

Graphing lines

Using y = mx + b1) Find b on the y-axis 2) Follow the slope by up/down then right/left 3) Connect the points

Using X & Y-Intercept 1) Find x-intercept using y=0

- 2) Plot the x-intercept
- 3) Find y-intercept using x=0
- 4) Plot the y-intercept 5) Connect the points

Exponents

Multiplication - add exponents $50^3 \times 50^4 = 50^7$

Division – subtract exponents $\frac{50^6}{10} = 50^2$

Exponent to an exponent - multiply $(50^6)^3 = 50^{18}$

Exponent to parenthesis

 $(15 \times 8)^3 = 15^3 \times 8^3$

$$\left(\frac{15}{8}\right)^3 = \frac{15^3}{8^3}$$

Negative Exponent

$$25^{-2} = \frac{1}{25^2} = \frac{1}{625}$$

Zero Exponent - always equals 1 Any number to the zero = 1 for example: $345^0 = 1$

WWW. buenomath.com FREE step-by-step solutions

Free additional copies & subjects

Factoring

Perfect Squares: $(a + b)^2 = a^2 + 2ab + b^2$

Difference of Squares: $(a - b)^2 = a^2 - 2ab + b^2$

Sum of Cubes: $a^3 + b^3 = (a + b) (a^2 - ab + b^2)$

Difference of Cubes: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

Quadratic Formula
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Discriminant

 $b^2 - 4ac > 0$, two real solutions $b^2 - 4ac = 0$, one real solution $b^2 - 4ac < 0$, no real solution

Distance Formula $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ **Midpoint Formula** $x_{mp} = \frac{x_2 + x_1}{2}$; $y_{mp} = \frac{y_2 + y_1}{2}$ **Pythagorean Theorem** $a^2 + b^2 = c^2$ c = hypothenus