WWW. advantagesideout.com (858) 635-8904

Physics

A math & science tutorial center

(<u>Kg ∙ m</u>) Momentum, p, sec p = mv $\Delta p = F(\Delta t) = m(\Delta v)$ *impulse* = $F \bullet (\Delta t) = \Delta p$ $KE = \frac{p^2}{2}$ **Power:** (1 watt = 1J/sec) $P = \frac{work}{1} = Force \bullet velocity$ Work: $W = F \cdot d = \Delta E$ $(1J = 1N m) \quad W = P \cdot A \cdot d$ $W = P \cdot V$ d is in direction of F **Kinetic Energy:** $KE = \frac{1}{2}mv^2$ **Potential Energy:** *PE* = *mgh* Newtons laws First: object in motion stays in motion Second: F=ma Third: Every action has an equal and opposite reaction Force: F = ma = weight $(1N = Kg \bullet m/sec^2)$ **Frictional Force:** $F_f = \mu \bullet F_N$ **CIRCULAR MOTION** Centripetal Acceleration : $a_{c} = \frac{v^2}{r}$ (pointed toward center) Centripetal Force : $F_c = ma_c^2 = \frac{mv^2}{r}$ **Centripetal velocity** $v_c = \frac{2\pi \bullet r}{\tau} = 2\pi \bullet r \bullet f$ T = periodFluids $A_1v_1 = A_2v_2$ $\Delta P = \frac{\delta}{2} (V_2^2 - V_1^2) \qquad P = \frac{F}{4}$ $P_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$ $P = P_{atm} + \rho g h$ $(P_{atm} = 101 \, KPa, \rho = 10^3 \, Kg \, / \, m^3, h = meter)$ Bouyant F = F of displaced water $B = \rho g V = \rho g A h$ **Toricelli:** Flow rate = $A\sqrt{2g\Delta h}$

ROTATIONAL KINEMATIC LINEAR KINEMATIC **Distance** (m): $d = d_f - d_i$ **Displacement (rad):** $\theta = \frac{s}{s}$ Velocity (*m*/sec): $v = \frac{d}{d}$ Velocity (rad/s): $\omega = \frac{v}{c} = \frac{\Delta\theta}{c}$ Acceleration (*m*/sec²): ^t $a = \frac{v_f - v_i}{i}$ Accelereation (rad/s²): $\alpha = \frac{\Delta\omega}{\Delta\tau} = \frac{v}{rt} = \frac{a}{r}$ at constant a $v_f = v_i + at$ at constant a $\omega_f = \omega_i + \alpha t$ $v_{avg} = \frac{1}{2} \left(v_i + v_f \right)$ $\omega_{avg} = \frac{1}{2} \left(\omega_i + \omega_f \right)$ $\omega_f^2 = \omega_i^2 + 2\alpha(\theta_f - \theta_i)$ $v_{\ell}^2 = v_i^2 + 2a(\Delta d)$ $\theta_{f} = \theta_{i} + \omega_{i}t + \frac{1}{2}\alpha t^{2}$ $d_{f} = d_{i} + v_{i}t + \frac{1}{2}at^{2}$ $\theta_{f} = \theta_{i} + \omega_{i}t + \frac{1}{2}\alpha t^{2}$ $d_f = d_i + v_{avg}t$ $\theta_{f} = \theta_{i} + \omega_{avg} t$ Rotational KE: $KE = \frac{1}{2}I\omega^2$ Torque: $T = I\alpha = I\frac{a^2}{r}$ **Mechanical Advantage** $MA = \frac{F out}{F out}$ F in MA = number of line Work: $W = T \theta$ supporting load **Power:** $P = T\omega$ Efficiency, Eff Angular momentum: = $I\omega$ $Eff = \frac{Work output}{V}$ **Moments of Inertia** Hoop: $I = MR^2$ Disk: $I = \frac{1}{2}MR^2$ total input $\operatorname{Rod}_{(\operatorname{center rotation})}: I = \frac{1}{12} \operatorname{ML}^2$ **Gravitational F=** $G\frac{m_1 m_2}{2}$ Rod_(end rotation): $I = \frac{1}{3}$ ML² Sphere : $I = \frac{2}{5}$ MR² **Electrical F=** $k \frac{q_1 q_2}{r^2}$ **DOPPLER EFFECT** Source with vs away from Observer toward with v_o observer observer stationary v_{eff} = v $\begin{aligned} \lambda_{\text{eff}} &= \lambda \bullet \frac{v - vs}{v} \\ f_{\text{eff}} &= f \bullet \frac{v}{v - vs} \end{aligned} \quad \begin{aligned} \lambda_{\text{eff}} &= \lambda \bullet \frac{v + vs}{v} \\ f_{\text{eff}} &= f \bullet \frac{v}{v + vs} \end{aligned}$ stationary $v_{eff} = v + vo$ toward $\lambda_{\text{eff}} = \lambda$ source $f_{\text{eff}} = f \bullet \frac{V + VO}{V}$ $v_{eff} = v \pm vo$ $\lambda_{eff} = \lambda \bullet \frac{v \pm vs}{v}$ $f_{eff} = f \bullet \frac{v \pm vo}{v \pm vs}$ $v_{eff} = v - vo$ away from $\lambda_{\text{eff}} = \lambda$ source $f_{\text{eff}} = f \bullet \frac{v - vo}{v - vo}$

Period, T: time to complete one cycle **Frequency,** f or v: cycle in one second, Hz = 1/sec Angular frequency, a: $\varpi = 2\pi f$ (rad/sec) **Overall:** $T = \frac{1}{f} = \frac{2\pi}{\omega}$ Springs Hooke's law : F = -kx**Period :** $T = 2\pi \sqrt{\frac{m}{r}}$ Frequency : $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ Potential E : $PE = \frac{1}{2}kx^2$

SIMPLE HARMONIC MOTION

Pendulum **Restoring F** : $F = mq \sin \theta$ Period : $T = 2\pi \sqrt{\frac{\ell}{q}}$ Frequency : $f = \frac{1}{2\pi} \sqrt{\frac{g}{\ell}}$

Physics

WWW. buenomath.com FREE step-by-step solutions

FREE additional copies & subjects

THERMODYNAMICS Temperature: measure of average K.E. of system Heat: transfer of thermal E. Heat Capacity, C: energy to raise 1 gram by 1 degree Heat Energy, Q: $Q = C \Delta T$ **Conduction:** through physical contact **Convection:** hot fluid or gas rises through cooler fluid Radiation: no medium needed for transfer, ex. electromagnetic wave **Calculating Heat or Energy** $Q = \Delta U + W$ $Q = m \cdot C \cdot \Delta T$ $Q = m \cdot \Delta H_{fus} / vap$ GASES STP:0⁰ C and 1 atm Ideal gas law : PV = nRT**Charles law** : $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ **Boyle's Law** : $P_1V_1 = P_2V_2$ **Combined Law** $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ Molecular Speed $\mu = \sqrt{\frac{3RT}{MW}}$ Graham's effusion α MW WAVES speed : v =**Pitch** determined by *f* **Intensity** = loudness α A² Atom Thompson's: Electrons are distributed in a positive charged medium like "raising in pudding" Rutherford: mass is found in the positively charged nucleus and electrons

move around it. Bohr: Electrons move in orbits. Electrons can absorb or emit energy

Quantum Mechanic: Rather than orbits electrons are more likely to be found in some regions

ELECTRICIT	Y a a	PHYSIC
ELECTRICIT Coulomb's law $E = \frac{F}{q} =$ Direction of E $\Delta V = E d$ $V = k \frac{q}{2}$ (1)	$k \frac{q}{r^2}$:: from + to -	Acceleration Avogadro's Coulomb's Gravitation Planck's co Ideal gas c
r $W = \Delta PE = qEd =$ Current, (1A = Ohm's law: V Resistance: R = resistivit Power: P = I (W) Capacitance: (F = 1C/V) E = $\frac{1}{2}QV = \frac{1}{2}$	$= q\Delta V = k \frac{q_1 q_2}{1}$ $= 1C/s): I = rq / t$ $= IR$ $(1\Omega = 1V/A)$ $y \cdot \frac{\text{Length}}{\text{Area}}$ $V = I^2 R = \frac{V^2}{R}$ $C = \frac{Q}{V} = k\varepsilon \frac{A}{d}$ $CV^2 = \frac{Q^2}{2C}$ parallel	Speed of s Speed of li Permittivity Electron cl Electron vo Faraday Atomic ma Mass of ele Mass of pr mass of ne Mass of ea Radius of e Specific he Heat of en Heat of fus
$I_t = I_1 = I_2$	$I_t = I_1 + I_2$	
$R_t = R_1 + R_2$ $\frac{1}{c_t} = \frac{1}{c_1} + \frac{1}{c_2}$ Kirchhoff's Lo change i a closed Kirchhoff's Ju current into	$\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2}$ $C_t = C_1 + C_2$ pop rule : Total in circuit is zero	CONVERS 1 m = 39.3 1 m = 10 ¹ 1 mi = 528 1 in = 2.54 1 L = 10 ³ 1 qt = 4 pi 1 slug = 1 1 atm = 1 1 N = 10 ⁵ 1 lb = 4.44 1J = 107 e 1 cal = 4.7 1 eV = 1.6 1 V = 1.07

PHYSICAL CONSTANT	S	
Acceleration (gravity) Avogadro's number	g N _A	9.8 m / s ² 6.022 x 10 ²³ particles
Coulomb's constant	k	8.988 x 10 ⁹ N·m ² /C ²
Gravitational constant	G	6.67 x 10 ^{−11} N⋅m²/Kg²
Planck's constant	h	6.63 x 10 ⁻³⁴ J⋅s
Ideal gas constant	R	0.0821 atm·L/(mol·K)
		8.314 J/(mol·K)
		1.987 cal/mol-K
Speed of sound (STP)	С	331 m/s
Speed of light (vacuum)	е	3.00 x 10 ⁸ m/s
Permittivity free space	ε	8.85 x 10 ⁻¹² C ² /N·m ²
Electron charge	eV	1.6022 x 10 ⁻¹⁹ C
Electron volt	μ	1.6022 x 10 ^{–19} J
Faraday	F	9.6485 x 10 ⁴ C/mol
Atomic mass unit		1.6606 x 10 ⁻²⁷ Kg
Mass of electron		9.11 x 10 ^{–31} Kg
Mass of proton		1.6726 x 10 ^{–27} Kg
mass of neutron		1.6750 x 10 ^{−27} Kg
Mass of earth		5.976 x 10 ²⁴ Kg
Radius of earth	•	6.378 x 10 ⁶ m
Specific heat (water)	С	1 cal/(g °C)
		4.18 J/(g °C)
Heat of enthalpy (water)	ΔH_{vap}	2260 J/g
Heat of fusion (water)	ΔH_{fus}	334 J/g

SION FACTORS 37 in = 3.281 ft = 1.094 yd 15 f m = 10¹⁰ Å = 10⁹ nm 280 ft = 1.609 km 540 cm $cm^3 = 2.113 \text{ pints} = 1.057 \text{ qt} = 0.264 \text{ gal}$ $t = 0.25 \, gal$ 4.59 kg $.013 \times 10^5 \text{ N/m}^2 \text{ or Pa} = 1.013 \text{ bars} = 760 \text{ mm Hg}$ 4.70 lb/in² N/m² dynes = 0.2248 lbs 48 N $ergs = 0.7373 \text{ ft-lb} = 1 \text{ Kg} \cdot \text{m/sec}^2 = 1 \text{ C} \cdot \text{V}$ 184 J 602 x 10⁻¹⁹ J = 1.602 x 10⁻¹⁹ C·V С

V 1 BTU = 778 ft-lb = 252 cal = 1054 J 1 horsepower = 550 ft-lb/sec = 746 W $1 T = 10^4 G$

1 Kg = 2.205 lb = 35.274 oz 1 m = 10 dm1 lb = 16 oz = 453.59 g 1 m = 100 cm1 ft = 12 in 1 m = 1,000 mm1 yd = 3 ft $1 \text{ m} = 10^6 \, \mu \text{m}$ 1 lb = 16 oz $1 \text{ m} = 10^9 \text{ nm}$ 1 Ton = 2,000 lbs1 km = 1,000 m